Thursday, May 3, 2012

Icarus Measures Superluminal Neutrinos

Recently someone posted a reply to a comment I made on October first 2011 in which I indicated that the OPERA results, which suggested that neutrinos can travel at the speed of light, were in agreement with prediction I made in 2010 in my Introduction to Quantum-Geometry Dynamics.

The poster replied:

Sadly, as we now know, OPERA’s measurement apparatus were faulty and the neutrinos were not superluminal, as Cohen and Glashow so powerfully argued.”

An even stronger argument against QGD’s prediction of superluminal neutrinos is the recently released Icarus results which provides strong evidence that neutrinos travel at the speed of light. The Icarus group arrived at this conclusion after studying the data for seven neutrinos detected in November 2011.

Though it is true that the Icarus results refutes the Opera results, they support the Opera group’s initial conclusion that neutrinos travelled at superluminal speed. Hence, the Icarus are in agreement with QGD’s predictions (and so does Opera’s data after being corrected to take systematic errors in consideration).

You may ask yourself: How can the Icarus results support the possibility of superluminal neutrinos when they clearly indicate that neutrinos travel at the speed of light?

First, it’s important to know that QGD didn’t predict that neutrinos could travel faster than the speed of light. What QGD actually predicted is that the relative speed of neutrinos can exceed the speed of light. To understand the nuance we need to discuss the QGD’s model of space.

QGD suggest that space is quantum-geometrical and emergent. In other words, according to QGD, space is generated by the repulsion force between preons(-); one of only two fundamental particles admitted by the model. Unlike the model of continuous space implied by all physics theory, quantum-geometrical space has structure. Particles at the fundamental scale of reality move by leaping between ‘quanta’ of space (see opening chapters of Introduction to Quantum-Geometry Dynamics).

Using the quantum-geometrical model of space, QGD defines two kinds of speed. The first, which we call absolute speed, is the fundamental speed; the speed at which an object moves within the quantum-geometrical space. The second type of speed, which is the speed that all physics experiments measure, is the speed of an object relative to another object or relative speed. Experiments such at the Icarus can only measure the relative speed of neutrinos. That speed corresponds the speed of neutrinos relative to their target at the Gran Sasso laboratories (for detail explanation see this article).

The Icarus results (download their paper here) shows that they calculated the speed of 7 neutrinos. Their data indicates that three neutrinos travelled at speed lower than the speed of light, one neutrino travelled at the speed of light and three neutrinos travelled at faster than the speed of light. The slowest neutrino arrive 18 nanoseconds later than light would have along the distance that separated their source from their target. The fastest neutrinos arrived 19 nanosecond faster.

Now, according to the model of neutrinos that is consistent with quantum-geometrical space, neutrinos can only travel at the speed of light. According to the model, the speed of neutrinos, like that of photons, is independent of their energy.

Considering that the speed of neutrinos is the speed of light and after taking into account the actual margins of error of the measurements, it follows that the variations relative speeds of the seven neutrinos observed by the Icarus group is consistent with the variations in the relative speeds attributable to the motion of the Earth along the axis that connects the source of the neutrinos at CERN with their target in Gran Sasso (this is explained in detail a previous article).

The variations found in the relative speed of neutrinos in experiments such as the Opera and the Icarus, are much more revealing than it appears. Not only do they provide a different way to evaluate the speed of light (given a large enough sample, the average of the relative speeds of neutrinos approaches the speed of light), but they provide a means to indirectly measure the absolute speed of the Earth.

In conclusion, though it is true the Icarus data refute the neutrinos speed measurements of the Opera experiment, the variations in the relative speed of neutrinos between the two experiments are consistent which each other and consistent with QGD’s predictions.

A Prediction for the Upcoming Measurements of the Speed of Neutrinos

This month, several research groups, including OPERA and Icarus, will conducts new experiments that aim to measure the speed of neutrinos. In addition to the predictions already made, I would like to add the following:

If a group of neutrinos are detected in a short time interval, even if detected by different experiments, they will be found to have the same relative speed. If confirmed, this prediction would support the QGD interpretation that the difference between the speed of light and the relative speed of neutrinos is attributable to absolute motion of the Earth along the axis that connects the source of neutrinos at CERN and their target at Grand Sassol; the variations in the relative speeds neutrinos being themselves caused by the motion in quantum-geometrical space of the axis between CERN and Grand Sasso.

Thursday, December 22, 2011

A Physics Theory is Required to do Three Things: describe, explain and predict (part 3)

Note to readers: Part 1 and part 2 are necessary prerequisites for understanding this article.

QGD Cosmology

Though quantum-geometry dynamics is a physics of fundamental reality, its axioms imply a number of predictions at the cosmological scale. If, as QGD proposes, space is discrete and emerges from the interactions between preons(-) and if the single fundamental component of matter is the preon(+), then the formation of all material structures, from particles to galaxies requires that the Universe evolved from an isotropic state where all preons(+) were free and uniformly distributed through the entire quantum-geometrical space of Universe. Before I move on, I would like to warn the reader that much of QGD contradicts the dominant theory of the origin and evolution of the Universe, but none of it, as far as I know, contradicts observations. In fact, not only does QGD cosmology not contradict observations that support the dominant theory, but it also accounts for observations that the dominant theory cannot explain and which constitutes strong counter-evidence against it. As we will see, QGD cosmology proposes that ours is a locally condensing universe rather than an expanding universe. A locally condensing universe, as defined below, is nearly undistinguishable from an expanding universe. From an observer’s point of view, the galaxies of both types of universe will appear to recede from each other at an accelerated rate. But QGD not only agrees with all observations that support the Big Bang theory, it also agrees with the observations of redshift anomalies, which is strong counter-evidence against the Big Bang theory. QGD not only describes and explains, but predicts the conditions that will produce redshift anomalies.

The Material and Spatial Dimensions of the Universe

When we think of the Universe, we think of what we observe through telescopes. We think of planets, stars, galaxies, galaxy clusters; the material structures of the Universe. When we study the Universe, we do so by observing the material structures, but not the entire Universe is observable. We can only observe what is made of matter because only matter can interact with the instruments we use for observation. Yet the Universe is made of more than structures of matter; it is also made of space. And if QGD is correct, that space is quantum-geometrical. Virtually all of physics considers space to be an amorphous expanse in which physical systems exist and interact. As a consequence all physics theories are theories of matter (or matter and energy to be precise). Quantum-geometry dynamics too is a theory of matter, but it is also a theory of space. Also, according to QGD, not only is space quantum-geometrical and emergent, it also determines the very structure of matter.

Conservation of Space

QGD proposes that it be the repulsive force of n-gravity acting between preons(-) that generates space (n-gravity being the fundamental force intrinsic to preons(-)). Since preons(-) are fundamental particles, they obey the law of conservation which states that nothing fundamental can be created or destroyed. It follows that there must be a finite number of preons(-), which in turn implies that there is a finite number of interactions, thus a finite amount of quantum-geometrical space. Therefore, as large as it appears to be, space must be finite.

Particle Formation and Strict Causality

QGD follows the principle of strict causality, which is short for saying that the formation of any non-fundamental physical object requires the pre-existence of its constituents. Fundamental objects, being fundamental, pre-exist everything else (post-exist everything else as well). The strict causality implies that any structure requires the pre-existence of its components may appear trivial, but it is a principle that some theories feel is fine to violate. Other theories, such as string theory, can’t tell which particles may be components of which other particles (see Leonard Susskind’s lectures of reductionism
here
). As a result, theories that violate strict causality may ambiguously indicate that reality can get more complex the closer we approach the fundamental scale. There is no such ambiguity in quantum-geometry dynamics. Strict causality implies that reality get simpler at the fundamental scale. QGD predicts the existence of only two fundamental particles and two fundamental forces. Reality can’t get any simpler. QGD shows that all laws of physics can be derived from a simple of set of axioms which is complete and consistent. This, of course, contradicts Gödel’s incompleteness theorem. But if the Universe is made of a finite set of fundamental particles which combine in accordance to a finite set of fundamental laws to produce physical reality, then it follows that Gödel’s first incompleteness theorem is, at least in its present form, wrong. Also, if you believe that the fundamental components and laws are a consistent and that the Universe is a coherent system, then Gödel’s second incompleteness theorem must also be wrong. It follows the Universe is found to be complete and consistent system, then Gödel must be revised and Hilbert’s program must be reinstated. An acquaintance once commented that we should make a distinction between a mathematical demonstration and a physical demonstration. My take on the question is that it makes no difference. If the Universe is found to be both coherent and complete (that is, fundamental particles and the laws that govern them are consistent and all that they produce remains part of the Universe (completeness), then all physical processes are emergent from the axiomatic set of fundamental particles and laws. Now, that means that not only are the basic physical interactions emergent, but all processes, including environmental, social, cultural and neurological processes emerge from the fundamental axiomatic set. One can argue that, as abstract mathematics may be from reality, they are the result of mental processes, which are necessarily physical so that they, themselves, can be derived from the fundamental laws of physics. In that context, it doesn’t matter what the construct is (a painting, a film, a poem or a mathematical theory), it must be emergent and can theoretically be derived from the fundamental axiomatic set.

The Cosmic Microwave Background Radiation

Quantum-geometry dynamics describes the initial state of the Universe as being one in which preons(+) were free and distributed uniformly throughout the quantum-geometrical space. Following this initial state, the simple structures we call photons started to form. The formation of photons happened throughout the Universe uniformly and resulted in the cosmic microwave background. The density of the preonic field being greater than it is now, the photons produced were more massive (see mass/energy equation in Introduction to Quantum-Geometry Dynamics). Most preons(+) are still free today and still form photons (though at the lower rate). The collective gravitational effect of those free preons(+) have been observed and correspond to what has been called dark matter.

Small Structure Formation

The strict causality principle, which requires the pre-existence of a structure’s components, implies that photons combined to form the electrons, positrons and neutrinos. In fact, the well-known electron-positron annihilation is simply the reverse of the mechanism of particle formation. This is explained in the book.

Large Structures

The formation of large structures also follows the principle of strict causality. It implies the formation of larger particles, then nuclides (the components of the atomic nucleus) then light atoms. These eventually formed stars and galaxies. The formation of increasingly massive structures (elements) continued in stars where the gravitational interactions are sufficient fusion of elements. It has also been observed that particles, nuclides in particular, have certain sizes. The lower and higher boundaries on the size of any particle determine the island of stability. The mechanisms which limit the size of a particle are explained in chapter titled Nucleus Size and Formation of the book. This chapter explains the notion of equilibrium and how only particles that are within the range of equilibrium are stable and why particles that are lighter or heavier will decay.

Locally Condensing Universe

This is one the most distinctive aspect of the QGD cosmology. If follows from the axioms of QGD that the size of the Universe, defined as the space emerging from the interactions between preons(-) is constant, but within that space massive structures will gradually collapse towards their center. To the observer, a locally condensing universe is nearly indistinguishable from an expanding universe. For instance, the distance between galaxies progressively increases in both locally condensing universe (LCU) and expanding universe (EU). And in both the rates at which the galaxies retract from each other increases, which indicates that galaxies retract at accelerated rate in both the LCU and EU. So if both LCU and EU are nearly indistinguishable to the observer, how do we know which is correct? Is there any evidence which would support LCU? The observational evidence exists and has been known from some time as redshift anomalies. The redshift is simply the shift of the frequency of light coming from a moving source (which is understood to be analogous to the Doppler Effect for sound). The faster the relative speed of the source of light away from the Earth, the greater the redshift of the light coming from that source. The magnitude of the redshift is used to calculate the distance between galaxies and the rate at which they recede from each other. Hence it is used to infer the expansion of the Universe. According to the Big Bang theory, which is the dominant theory of the expanding universe, the further away galaxies are, the faster they will recede from us. This implies that neighboring cosmic structures (galaxies, quasars, etc.) would recede from us at the same rate, thus have the same redshift. This is generally true, but there are an increasing number of observations that show neighboring cosmic structures having significant differences in their redshifts. This would indicate that the rate at which they recede from us differs by many orders of magnitude. Redshift anomalies (and there are now thousands of them) are in direct opposition with the Big Bang and other expanding universe theories. Yet, redshift anomalies support the idea of a locally condensing universe. Not only do redshift anomalies support QGD cosmology, they are predicted by QCD cosmology. Redshift, according to QGD, is not a measure of the rate at which they galaxies recede, but the rate at which they collapse (which itself is a function of the density of the galaxy or cosmic structure). The acceleration of the rate at which galaxies recede is also consistent with rate at which they would collapse under the gravitational effect described by QGD. The rate of collapse of cosmic structures obeys the QGD law of gravitation which is described by the equation found in chapter 8 of my book. As such it is affected by their mass and density, but also by the gravitational interactions between them. Using the QGD gravitational interaction equation, the rate of collapse between galaxies will be affected by dark energy or dark matter effects depending on the distance between them. The dark energy and dark matter effect will also determine the shapes of the interacting galaxies. Given certain distance exceeding a certain a value (see part 1 and part 2), n-gravity will be dominant (the dark energy effect) resulting in a flattening of the galaxies along the axis that connects them. While at distances lower than the equilibrium point, p-gravity becomes dominant (the dark matter effect) and the shape galaxies will expand along the axis connecting them. The same principle explains why the material universe (that part of the universe where matter is concentrated) is nearly flat (something that the Big Bang and EU theories can’t explain). Thus the universe should become flatter as it evolves.

Universe as a Finite and Closed Structure

We mentioned earlier that the quantum-geometrical space must be finite. If QGD is correct, it must also be closed. That is, a photon going in a straight trajectory would eventually go forth to its point of origin, whichever point we arbitrarily chose as origin. So though the Universe may be finite, there would be no edge to it.

Summary of QGD Cosmology Predictions

  • The Universe evolved from an isotropic state. This eliminates all problems associated with singularities.
  • The Universe is a finite and closed system. This eliminates all problems associated with infinities.
  • The Universe in strictly causal

Consequences for Particle Physics

Particle accelerators, such as CERN’s large hadron collider, are extraordinary tools that attempt to recreate on a microscopic scale the conditions that prevailed at the beginning of the Universe. The hope is that by recreating the conditions immediately following the Big Bang will reveal the fundamental particles and states that existed at the very beginning of the Universe. This is a valid approach if the Big Bang theory’s assumption that the Universe evolved from a singularity is correct. But what if, as QGD suggest, the Universe evolved from an isotropic state? If such is the case, then the conditions recreated in particle colliders are not those that prevailed at the beginning of the Universe, but conditions we could expect to be found much later and only in dense preonic structures such as those existing prior to the formation of starts. Thus, particles colliders do not reveal fundamental reality, but an emergent reality. In other words, trying to discover fundamental reality using particle accelerator is like looking at the wrong end of microscope to reveal the microcosm or at the wrong end of a telescope to observe the macrocosm. That is not to say that such instruments as the LHC are useless. On the contrary, such instruments are essential to our understanding of reality. It’s only that what they show us is not fundamental reality, but processes that came into existence at states that followed the initial isotropic state of the Universe.

Sunday, December 11, 2011

A Friendly Wager about Superluminal Neutrinos

Or How Our Two Cents May Be Worth 10,000 Times More

Suggested prior reading: Why Can’t Anything Move Faster Than Light?

I’ve been following the well written and often thought provoking blog of Johannes Koelman. One of his articles titled Einstein On Steroids: Dirac, The Higgs, And Speeding Neutrinos in which he discusses some of possible implications of the OPERA results (which appear to show that neutrinos can violate the speed of light limit imposed by special relativity) caught my attention.

In his interesting and entertaining article (which you should definitely read if only as an example of the sociology of science), Johannes suggests that no theoretical physicists would bet in favor of the confirmation of the OPERA results while there would be plenty of them that would bet against it (the results are overwhelmingly dismissed as being an experimental error).

Now, having predicted the possibility of relative superluminal particles (absolute speed cannot exceed the speed of light), specifically that relative superluminal photons and neutrinos. Both particles share some characteristics which allows them to move at relative speed in excess of c but with actual intrinsic speed equal to c. I confidently responded that I would take the bet.

As readers of this blog (see here and here) and Introduction to Quantum-Geometry Dynamics know, I believe that the speed in excess of the speed of light corresponds to speed of the Earth relative to the quantum-geometrical background along the axis connecting CERN to Gran Sasso.

I was pleasantly surprised that, like me, Johannes was willing to put his money where his “blogging mouth” is. So after exchanging a few email we agreed to the terms of a bet. You can read them on his blog appropriately titled Putting My Money Were My Mouth Is.

Of course, neither of us are doing this for the money (though $200 can buy an outing in a pretty decent restaurant and I love restaurants), but mainly as a way to stimulate discussions and awareness of the very fundamental question the OPERA group poses to physics.

I think this could be a lot of fun.

Monday, November 21, 2011

A Physics Theory is Required to do Three Things: describe, explain and predict (part 2)

Note to readers: reading of part 1 is a prerequisite for a full understanding of the following

As explained in part 1 of this article, quantum-geometry dynamics explores the consequences of space being

  1. Discrete

    and

  2. emerging from the interactions between preons(-).

     

Preons(-), according to quantum-geometry dynamics, are fundamental particles that dimensionalize and determine the discrete nature of quantum-geometrical space which, in turn, dictates the structure of matter, itself composed of the preons(+) (the only other fundamental particle of QGD).

QGD, which follows from the axiom of discreteness of space, forces us to rethink some assumptions we have come to make about physical reality; even basic notions such as that of mass, energy, momentum come into question. As is discussed in detail in Introduction to Quantum-Geometry Dynamics, choosing the axiom of discreteness of space instead of that of continuity of space has profound consequences for all of physics. Virtually all physics theory assume that space is continuous, so it’s not surprising that a physics based on discreteness of space provides descriptions of physical systems that are radically different from continuity-based theories.

Letting go of foundational concepts is difficult, especially for professional physicists. This is understandable since these foundational concepts are the basis of relatively successful theories reinforced by years, often decades, of study, research and models which are often supported by experimental data.

It is also understandable that physicists will evaluate new ideas from within the framework of the theories they use to make sense of reality. Yet a new theory doesn’t need the validation of other even well established and tested theories any more than nature requires science to exist. A theory is required to do three things; describe, explain and predict. Nothing more. Nothing less.

So my advice to all readers is to study QGD for itself and outside the framework of any other theory and to check it for internal consistency and most importantly for consistency with physical reality. The validity of a theory cannot be determined by any theory built of a different axiom set. Theories issued from different axiom sets are mathematically bound to disagree. Thus the validity of a theory can only be determined by observation and experimentation.

The real test of a theory is not how well or elegantly it describes and explains physical systems. The real and only valid test of a theory is in its capacity to make original and testable predictions. We will discuss now QGD predictions relating to fundamental forces and effects, but before we do so, we will go over some basic concepts.

Some Basic concepts of QGD

Mass and energy are fundamental and intrinsic properties of preons(+), the fundamental particles of matter.

Mass is the property of preons(+) that manifests itself in gravity, which according to QGD is a composite effect of p-gravity (the fundamental force intrinsic to preons(+), and n-gravity (the fundamental force intrinsic to preons(-)), the particles which dimensionalize space. Since preons(+) are fundamental, their mass is the fundamental unit of mass . It follows that the mass of an object, or m, is simply the numbers of preons(+) it contains.

The fundamental unit of energy is the energy of a preon(+). The energy of a preon(+) is that which allows it to leap from one preon(-) to the next on its path, which is the fundamental speed of c. So the energy of a preon(+) is simply its mass multiplied by c that is; 1 * c or simply c.

It follows that the energy of an object is equal to the number the number of preons(+) it contains times c. Thus, as the reader can see, E=mc, naturally follows from the axioms of quantum-geometry dynamics.

That said, it is important to know that E=mc does not describe an equivalence between mass and energy. Mass and energy are two intrinsic and fundamental properties of the preon(+). According to QGD, mass cannot be converted into energy or energy into mass. It follows that what is released during a nuclear reaction is not energy but particles which carry momentum (for a detailed explanation see chapters 8, 9 and 10 of Introduction to Quantum-Geometry Dynamics). The total mass and energy of a system doesn’t change, but absolute value of the momentums of the particles that composes it does.

Fundamental Forces

One of the main problems with which physicists have been struggling is to develop a theory that can unify quantum mechanics and relativity. A number of candidate theories have emerged over the years; all of which have failed. To be clear, QGD is not a grand unified theory; quite the opposite. QGD shows is that unification of quantum mechanics and general relativity is impossible to achieve.

QGD explains that a grand unified theory is unachievable because the axiom sets of the theories it tries to unify are not only axiomatically incompatible, they are mutually exclusive. That is, there is no way using current theories to develop a complete theory that can explain the four known forces that are the strong and weak nuclear interactions, the electromagnetic force and gravity.

Furthermore, QGD concludes that the main reason the four forces can’t be unified under one theory is that that none of them are fundamental forces. In other words, the strong and weak nuclear interactions, the electromagnetic force and gravity are either composite forces or a combination of composite forces and effects.

QGD predicts the existence of only two fundamental forces, n-gravity and p-gravity, respectively associated with its two fundamental particles, the preons(-) and the preons(+). From the equation that describes their combined effect between any two objects, we can derive solutions that correspond to the strong and the weak nuclear interactions, the electromagnetic effect and gravity. The equation describing the combined effects of n-gravity and p-gravity is:


Strong Nuclear Force

Gravity

Dark Energy

Electromagnetism

The electromagnetic interaction is a consequence of two effects. The first is the gravitational interaction described by the QGD equation above.

The second effect is a mechanism resulting from the interactions between electrically charged objects and the preonic field (the free preons(+) in quantum-geometrical space) which in proximity to charged particles becomes polarized. The changes in directions and speed of objects submitted to an electromagnetic force is here caused by the exchanges of preons(+) between objects and the preonic field. When objects acquire preons(+) from the preonic field, it takes on their momentums. This affects the net sum of momentums of the objects.

The Weak Interaction

The weak interaction is caused by the strong gravitational and electromagnetic interactions within nuclei and particles. Weak interactions cause decay when the mass of particles lies outside their island of stability (chapters 8 to 14). Different mechanisms individually or in combination are responsible for all forms of particle decay; the three forms of radioactive decay as well as the observed decay of all composite particles, which according to QGD includes all particles observed in high energy physics experiments.

QGD thus predicts that particle decay is not a probabilistic event, but obeys a strict causality principle (chapter 9; events and causality).

For a detailed explanation of the mechanisms of weak interactions please read the relevant chapters of Introduction to Quantum-Geometry Dynamics.

Dark Matter

The cosmology derived from the axioms of QGD predicts that most of the preons(+) in the Universe are still free and exist in the form of the preonic field. So though individual preons(+) interact weakly, sufficiently large regions of the preonic field interact with massive objects as if they were large physical objects themselves. Solutions of the QGD equation which take into account the preonic field describe the effect we know as dark matter.

Speed of Gravity

An important prediction, resulting from QGD’s model of quantum-geometrical space is that n-gravity and p-gravity are fundamental interactions and that gravity does not propagate at the speed of light, as is predicted by relativity, but is instantaneous.

To take a classic example; if the Sun were to suddenly disappear, according to general relativity, it would take 8 minutes (the time is takes for light to travel from the sun to the Earth) for the Earth to feel the effect. But according to quantum-geometry dynamics, we would feel the effect instantly.

This would explain the failure of all attempts to detect gravitational waves which should exists if gravity propagates as general relativity predicts.

Summary of QGD Predictions:

To conclude, below is a summary of the QGD predictions found in this second part of this series.

  • There are only two fundamental particles; the preon(-) and the preon(+)
  • There are only two fundamental forces; n-gravity and p-gravity
  • Space is discrete and emerges from the n-gravity interactions between preons(-)
  • Matter is made of bound preons(+), this includes all particles thought to be elementary
  • Dark matter is made of the free preons(+) which form the preonic field
  • Dark energy is an effect which is observed when the n-gravity component of the QGD gravitational equation exceeds the p-gravity component.
  • Gravity is instantaneous

In part 3 of this series, we will discuss the cosmological predictions of QGD.

Thursday, October 20, 2011

A Physics Theory is Required to do Three Things: describe, explain and predict (part 1)

NOTE: Some mathematical expressions embedded in the text had been omitted in the process of uploading the article. This has now been corrected for online article but not for RSS feeds.

A physics theory is required to describe, explain and predict. Nothing less, nothing more.

There is, of course, a lot of politics surrounding the theoretical physics industry and other reasons why a theory will be accepted or rejected, or come into favour, even rise to become dominant only to fall out of favour when new experimental results come up. I will try here to stir away from the politics of physics and write about what makes a theory scientifically successful (as opposed to sociologically successful).

A physics theory must describe a certain class of phenomena, explain them satisfactorily and make predictions which can be experimentally or observationally confirmed.

I received an email a few days ago from a German physicist who was quite disturbed by the fact that, as he puts it, quantum-geometry dynamics, as explained in Introduction to Quantum-Geometry Dynamics, goes against much of the dominant theories of physics. Not only does it not fit with dominant theories, it approaches the problem of developing a fundamental theory of reality axiomatically rather than empirically.

He was right of course. QGD does question a number of notions and concepts which we have come to accept (often unconsciously) as absolute truths. For example, all dominant theories are based on the axiom of continuity of space. QGD is founded on the axiom of discreteness of space. Not only does QGD consider space to be discrete, it proposes that space be the result of the interactions between preons(-); one of only two types fundamental particles the theory admits. Thus space is dimensionalized by preons(-).

QGD can be understood as a physics theory of quantum-geometrical space that implies that the structure of space determines the structure of matter and not the reverse.

QGD explains that the constancy of the speed of light is a direct consequence of the quantum-geometrical structure of space and shows that time is a purely relational concept having no physical reality. This is in disagreement with special relativity.

QGD also considers that mass is a fundamental property of matter and proposes that all matter is made of preons(+), the second type of fundamental particles. So all the particles which physics considers fundamental are, according to the QGD model, composite particles. Even photons, are shown to be composite particles made of preons(+). Thus QGD is in opposition with the standard model of quantum mechanics.

Finally, since a direct implication of space being quantum-geometrical is that the Universe evolved from an isotropic state rather than a singularity, it is also doesn’t sit well with the Big Bang theory.

The examples above concede that QGD disagrees with dominant theories in physics. So what?

When working on QGD, one of my biggest concern was to follow the laws of the initial axiomatic set rigorously so as to avoid coercing the theory into agreeing with any other theory. In other words, I wanted to let the theory develop in a manner consistent with its axiom set. Also as important as avoiding coercing the QGD to agree with another theory, it was essential to avoid contriving it to agree with experimental and observational data (which is another mistake science makes), but instead only compare explanations and predictions which have first been rigorously derived from the axiom set.

All a theory of physics is required to do is describe, explain and predict the behaviour of physical systems. It needs to agree with physical reality, not with other theories however successful they may be. So the only important question about quantum-geometry dynamics should be: does it agree with reality? I’ll let you, patient reader, be the judge.

What QGD describes?

QGD is a theory of fundamental reality which not only describes systems at the most fundamental level but shows that all phenomena, at any scale of physical of reality, can be described in terms of its two fundamental particles and associated fundamental forces.

Also, while physics provides definitions for notions such as mass, energy, momentum, quantum-geometry dynamics forces us to rethink those notions. It also provides a clear physical explanation of laws of conservation.

What QGD explains?

QGD explains why space is quantum-geometrical (it is the largest structure in the Universe) and is emergent.

That gravity is a composite force of the two fundamental forces and shows in a manner consistent with its principle and observations that the electromagnetic, the strong and weak forces are in fact effects resulting from the two fundamental forces.

It proposes an equation for gravitational interactions from which all forces can be derived. Other effects that can be derived are the dark matter and dark energy effects, which are particular solutions of the equation, the mechanisms of the different forms of particles decay and more.

What QGD predicts?

Predictions, specifically original predictions, provide the only real test for a theory. Any number of models can be built that can satisfactorily explain observations a posteriori, but only a solid theory can make predictions that can be experimentally tested.

Some of QGD predictions which have received some encouraging though insufficient experimental validation are the exclusion of the Higgs boson, the inexistence of extra-dimensions and superluminal relative speed of neutrinos (not absolute superluminal speed, since QGD predicts that neutrinos, like photons, can only move at the speed of light).

Why no Higgs Mechanism?

QGD shows mass to be a fundamental property of matter, that is, it is an indissociable property of preons(+). Thus the mass of an object, expressed in fundamental units, is simply the number preons(+) it contains (and energy, the number of preons(+) times the fundamental unit of kinetic energy). So since mass is a property of the fundamental particle of preons(+), it doesn’t require the existence of the Higgs boson or anything similar to the Higgs mechanism to convey mass. In fact, unlike gauge theories where many physical properties are extrinsic, fundamental properties displayed by each of the two fundamental particles are intrinsic to them.

The readers might find interesting that Newton’s law of universal gravity follows naturally from the QGD’s axiom for space and matter. Here’s how.

Considering any two gravitationally interacting objects a and b, we have all the preons(+) of structure a interacting with all preons(+) of structure b, then the contribution of their masses to the gravitational effect is directly proportional to the products of their masses, which can also corresponds to the number of preonic interactions between a and b. And when we take into account the effect of distance, which corresponds the number of preon(-) interactions between any two preons(+) belonging respectively to a and b, we get

Where d is the distance generated by preons(-) between a and b, and k is the proportionality constant between the fundamental forces associated with preons(-) and preons(+), respectively n-gravity and p-gravity (see Introduction to Quantum-Geometry Dynamics for detailed explanation).

This equation, is in agreement with Newton’s law of gravitation at the non-fundamental scale, that is, when the quantum-geometrical distance between two objects is such that n-gravity and p-gravity are in near equilibrium but positive. Thus Newton’s law of gravitation is an approximation of the QGD equation when the following are satisfied.

For those who aren’t familiar with QGD (which is most of you at this time), the constant k is one of one two constants required by the theory (the other one being c). Both are natural and fundamental. Also, all QGD measurement units are in natural non-arbitrary units.

Why QGD excludes of extra-dimensions

From space being an emergent property of preons(-), it follows that all dimensions of space must be physically equivalent (preons(-) don’t exist in space, they generate it). Since all dimensions (the mutually orthogonal directions from any point in physical space) are similar, motion in all along all existing dimensions must be possible and observable. Hence, if space is quantum-geometrical as defined by QGD, there can’t be any hidden or otherwise inaccessible dimensions.

Let us assume for a moment that space consists of more than three dimensions. If space has 3 + n dimensions then, since all emergent dimensions must be physically similar, it should be possible to draw sets of 3+ n mutually orthogonal lines through any point in space (preon(-)). And, we should be able to move along any of the 3 + n physical dimensions. But, observation and experiments confirm that we can’t create sets consisting of more than three mutually orthogonal lines so it follows that n = 0.

So, because all physical dimensions within our physical reality must be visible and since there can be only three visible dimensions, quantum-geometrical space, hence the Universe, must be tridimensional.

That said, extra dimensions are not entirely excluded (we certainly possess the mathematical models to describe them), but should they exist, their existence cannot be inferred from any interactions within the physical geometry of our universe. Hence, it does not matter whether extra dimensions exist. Their existence, if space is quantum-geometrical, is irrelevant to the physics of our reality.

Of course, string theory proposes strong arguments to the contrary and I encourage readers to review them as well.

About Superluminal Speeds

Superluminal are predicted and explained (see chapter 7 of Introduction to Quantum-Geometry Dynamics). Recent results from the OPERA group support this prediction (see earlier blogs on the OPERA results).

However, the reader should take note that the OPERA results are not definitive and have yet to be confirmed by other experiments. That said, I am confident they will be.

This concludes the first part of this blog. In the second part, I will discuss a number of predictions that are original with quantum-geometry dynamics and which can be tested experimentally. And as most of QGD predictions, the reader is forewarned that not efforts have been made to make them fit dominant theories and as a result may be found to be intellectually offensive.

(Introduction to Quantum-Geometry Dynamics volume 1 can be downloaded from here. Click here to read part 2 of the article.

Tuesday, October 11, 2011

Supernova Neutrinos and OPERA Superluminal Neutrinos in Agreement

A number of physicists have claimed that the neutrinos emitted by supernova SN 1987A constitute counter-evidence against the OPERA results which indicate neutrinos travelling at superluminal speeds.

The argument goes as follow. Neutrinos emitted by the SN 1987A supernova arrived approximately three hours before visible light emitted by the same source. Considering the estimated distance of the SN 1987A, if neutrinos had been travelling at speeds comparable to those measured by the OPERA group, the supernova neutrinos would have arrived not three hours but approximately four years before visible light from the same source.

Although the argument appears to make sense, it holds only if the superluminal speed measured by the OPERA group is taken as being the absolute speed of the neutrinos. But if, as QGD suggests, the superluminal speed of the OPERA neutrinos is the relative speed between neutrinos emitted by CERN and the target as Gran Sasso, that is, the difference between the measured superluminal speed and c corresponds to the absolute speed of the Earth along the CERN-Grand Sasso axis, then the argument loses its meaning.

Thus, according to QGD, the absolute speed of the OPERA neutrinos is the same as the absolute speed of the SN 1987A neutrinos, which is the exactly speed of light.

That said, the relative speed between the supernova neutrinos and the Earth may be different from the speed of light. And since neutrinos can travel only at the speed of light, any difference between the measured speed of neutrinos from a source and c should be attributed to the absolute speed of the Earth along the axis that connect the source to the target or detector. This can be used as the theoretical foundation for the construction of neutrino telescopes. Neutrino telescopes would allow much more precise measurements of cosmic distances and speed than what are possible using current methods.

A complete discussion of the principles behind neutrino telescopes will be included in volume two of my Introduction to Quantum-Geometry Dynamics.

Saturday, October 1, 2011

Faster than the Speed of Light Neutrinos exactly as Predicted by Quantum-Geometry Dynamics

-UPDATE- since the following article was posted in September 2011, new data appears to indicate that neutrinos have not measured speeds in excess of the speed of light. But the article Icarus Measures Superluminal Neutrinos underlines that is that the actual data shows measurements of neutrinos speeds in excess of the speed of light and that only the theoretically biased interpretation refutes relative superluminal measurements. -UPDATE-

When the news of the results of the OPERA group indicating that they had measured neutrinos that were travelling faster than the speed of light and that Einstein may be proven wrong, enthusiastic friends and family emailed or called to let me know that what I had predicted over a year ago was now being confirmed.

The news about the superluminal neutrinos caught the scientific world by surprise. None of the dominant theories had predicted, much less can explain the results. As for myself, though I was surprised by the unexpected news, the results of the OPERA group didn’t find me unprepared. The reason is that I had specifically predicted such superluminal speeds in my treatise on quantum-geometry dynamics well over a year ago (see www.quantumgeometrydynamics.com/QGD3.pdf ). Not only did QGD predict superluminal speeds but it also explains why neutrinos are more likely than other particles to achieve such relative speeds.

I will explain here what the results of the OPERA group mean according to QGD, but before I do I will ask for a bit of your time in order to introduce you to the basic but distinctive ideas that set quantum-geometry dynamics apart from current dominant theories.

First axiom of QGD: space is discrete, finite and dimensionalized by preons(-)

We all have been taught that space is infinite and continuous (that is, it can be infinitely divided into smaller and smaller regions). Continuity of space implies that between any two points in space, however close they may be, there lies an infinite number of points. QGD predicts the opposite by suggesting that space is finite and discrete (that is, there is a limit beyond which space cannot be subdivided). Therefore, there is a minimum physical distance between two points of space (the fundamental unit of distance) so that, according to QGD, the number of points between any two points in space must be finite. So you can’t subdivide space in segments that are smaller than the fundamental distance.

Another distinctive prediction of QGD is that space is emergent. That is, the dimensions of space result from the interaction between preons(-); which are one of only two types of fundamental of particles predicted by the theory. The dimensionalization of space results from the repulsive force acting between preons(-). That repulsive force, n-gravity, which is discussed in detail my introduction to quantum-geometry dynamics, is one of only two fundamental forces; each of which is carried by on type of fundamental particles. Hence preons(-) being the fundamental particles of space, we define the fundamental distance as that between two adjacent preons(-). You will also note that what exists between two adjacent preons(-) is not space but the unit n-gravity field. No physical object can exist in between preons(-).

Second axiom of QGD: all matter is composed of preons(+).

QGD predicts that all matter is made from the second type of fundamental particles called preons(+). By matter we include all particles, including those which current theories hold as fundamental. So according to QGD, electrons, positrons, neutrinos and even photons are composite particles made of preons(+) and since mass is a fundamental property of preons(+), then even photons have mass (QGD predicts that the Universe evolved from an isotropic state in which preons(+) were evenly distributed through the quantum-geometrical space. This primal state was followed by the formation of photons, the simplest preonic structures, and created what we know as the cosmic microwave background radiation).

Preons(+) travel through space by leaping from preons(-) to preons(-). Since the preon(+) can only make on leap at the time and since the leap is the fundamental unit of distance, then preons(+) move at the fastest possible speed. Light, or photons to be specific, travels at the speed of preons(+). So do neutrinos.

Time is a purely mathematical dimension

This is not an axiom of the theory, but rather a consequence of the first and second axioms; a theorem. From the axioms, the constancy of the speed of light is determined by the structure of space. Photons can move by leaping from preon(-) to preon(-). The leap becomes not only the fundamental unit of distance, but also the fundamental unit of time and their ratio the fundamental unit of speed. Since the constancy of the speed of light relative to quantum-geometrical space is a consequence of the structure of space alone, it does not necessitate the use of the notion of time dilatation.

Time, as understood by QGD, is a pure relational concept which allows comparison between phenomena and periodic and cyclic events (clocks). Time is a mathematical dimension and because it has no physicality, it can’t be unified with spatial dimensions which are undeniably physical. It follows that the concept of space-time and event horizons do not represent physical reality.

Absolute versus Relative Speed

If QGD is correct, then quantum-geometrical space forms a static structure that is physical in the same way that matter is physical. Quantum-geometrical is static but not amorphous. It dynamically interacts with matter. It also forms a background with which and in which matter interacts. Each individual preon(-) is distinct, occupies a specific position relative to other preons(-). Quantum-geometrical space thus as structure and we can define absolute motion as the change in position within it.

Since time is non-physical, we need to have definition of speed that is does not make use of it. We will define the absolute speed of an object as the ratio of the distance it travels over the distance light would travel simultaneously. Photon and neutrinos, for example, travel at the absolute speed of 1. Everything else travels at absolute speeds that are less than one.

Since there is no time and no time dilatation, and since we have taken time out of the definition for speed, we can define the notion of relative speed as follows:

Relative speed is the speed of a structure relative to another structure. The relative speed between two objects is equal to the sum of their absolute speeds along the axis that connects them. For example, if a photon moves towards an object that moves in its direction, then the relative speed between the photon and the object is equal to, where is the speed of light and, the speed of the object. If two photons are on collision course and are coming from diametrically opposite directions, their relative speed is equal to. Notice that though the relative speed between two objects can exceed the speed of light, their absolute speeds cannot exceed it.

Explanation of the OPERA results

According to QGD, neutrinos are composite particles which share structural characteristics with photons which made them travel at the speed of light and only at the speed of light. Based on this and the above discussion, we know that since neutrinos move at the speed of light that the measurement of their speed by the OPERA group is not their absolute speed of the relative speed between the neutrinos and their target. And the target being a point on Earth, we can assume from the definition of relative speed, that the difference between the measured speed of the superluminal neutrinos and the speed of light (the absolute speed of all neutrinos) must be the absolute speed of the Earth along the axis connecting CERN to Gran Sasso (the target).

So what the OPERA team unexpectedly measured is not the absolute speed of neutrinos but indirectly, the absolute speed of the Earth along the CERN-Gran Sasso axis. If this discovery is confirmed, then the OPERA results will indirectly support the existence of quantum-geometrical space.

Implications of the OPERA results

If the OPERA results are confirmed, much of what the dominant theories hold as true will be put into question. The three pillars of physics, special relativity, quantum-mechanics and the Big Bang theory will have to be retrofitted to fit the experimental results or, more likely, will have to make way for new theories.

Special relativity, which provides the foundation for most of current theories, is already put in question. For instance, the theory implies that the mass of an object approaches infinity as it approaches the speed of light and that infinite energy would be required to achieve. In other words, it would take the entire energy of the Universe times infinity to accelerate even a single neutrino to the speed of light. And a neutrino traveling at the speed of light should have infinite mass. So, if the OPERA measurements are confirmed, then the neutrinos evidently not having been supplied with infinite energy and not having infinite mass, special relativity would be showed to be flawed (to say the least).

Other flaws in the theory are also made evident by the OPERA results. Particles traveling faster than the speed of light would travel back in time (if special relativity is correct) which would violate causality (what we understand commonly as a time paradox). To illustrate this, imagine a system made of two devices; one that emits luminal neutrinos and one that emit superluminal neutrinos. Let’s call them device A and device B.

Let device A be triggered by a timer and let this timer be equipped with a neutrino detector that will stop the countdown if it detects a neutrino.

Let device B be equipped with a particle detector which is linked to its trigger so that, when if it detects a neutrino coming from device A, it will shot a superluminal neutrino back at it.

Now with the experiment.

The timer counts down to zero and trigger device A which shots a neutrino toward device B. Device B detects the neutrino from Device A and shots a superluminal neutrinos at back at it. The superluminal neutrino, travelling back in time, reaches device A before the timer triggers the emission of the neutrino and aborts the countdown.

Hence, device A will not emit the neutrino that will trigger device B. But if it doesn’t, then device B will not shot the superluminal neutrinos that will stop the timer. And if device B doesn’t emit the superluminal neutrino then the timer will count down to zero and device will emit the neutrino which will prevent that same neutrino to be emitted. You see the problem. This time paradox is an unavoidable consequence of the idea that time is physical.

Paradoxes emerging from theories always point to inconsistencies in them. QGD, being a consistent axiomatic system does not give rise to such paradoxes. In fact, because QGD follows the principle of strict causality (see chapter 6 of Introduction to Quantum-Geometry Dynamics), it doesn’t give rise to any paradox whatsoever.

With time being understood as a purely relational concept, that is, time a mathematical dimension, not a physical dimension, superluminal neutrinos travel only through the three dimensions of quantum-geometrical space. So using in the experiment above, superluminal neutrinos do not violate causality. QGD also shows causality to be a series of events where each event triggers the next one. According to QGD, the superluminal neutrino from device B cannot arrive at device A before it emits a luminal neutrinos.

Predictions regarding the duplication of the OPERA results

The test of any theory is not how well it fits with dominant theories (QGD makes no effort to do so), but whether or not the original predictions it makes are experimentally confirmed. If this is true, then quantum-geometry dynamics is doing good. Not only did QGD predict and explain superluminal speed over a year ago (see page 46 of Introduction to Quantum-Geometry Dynamics), but it implies the exclusion of the Higgs boson (chapters 6 and 15) and the non-existence of extra-dimensions (chapters 3, 11 and 15). QGD also makes a number of other predictions which will be discussed in the next post, but for now, we’ll conclude with the predictions QGD makes for experiments that will attempt to replicate the results from the OPERA group.

QGD proposes that the difference between the speed of the relative superluminal neutrinos and the speed of light corresponds to the absolute speed of the Earth along the axis that joins the source and target of the neutrinos. Therefore, the speed of neutrinos in future experiments will be a function of the angle between the source-target axis and the plane of motion of the Earth around the centre of the galaxy.

Future experiments will show that neutrinos’ speed will vary slightly depending on the orientation of the axis between the source and target of neutrinos. The relative speed of the neutrinos will be exactly the speed of light when the axis is perpendicular to the absolute direction of the Earth (it’s important here to insist that we’re not talking about the speed of the Earth relative to the Sun, the centre of the galaxy or relative to any other object). The speed of the neutrinos will be at its minimum and less than c when the axis between the source and target is parallel to the axis of absolute direction of the Earth with neutrinos moving in the same direction as the Earth. And the maximum relative superluminal speed will be achieve when the axis between source and target is parallel with the absolute direction of the Earth and the neutrinos move in opposite direction from that of the Earth. The difference between this maximum relative speed and the speed of light will be approximately 220km/sec plus or minus adjustments to take into account the difference between geometric and quantum-geometric distances.